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A new methodology is developed for the synthesis of linear, time-invariant (LTI) 
controllers for multivariable LTI systems. The aim is to achieve stability and performance 
robustness of the feedback system in the presence of multiple unstructured uncertainty 
blocks; that is, to satisfy a frequency-domain inequality in terms of the structured singular 
value. 

The design technique is referred to as the Causality Recovery Methodology (CRM). 
Starting with an initial (nominally) stabilizing compensator, the CRM produces a closed-loop 
system whose performance-robustness is at least as good as, and hopefully superior to, that 
of the original design. The robustness improvement is obtained by solving an infinite- 
dimensional, convex optimization program. A finite-dimensional implementation of the 
CRM has been developed, and it has been applied to a multivariable design example. 
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1. INTRODUCTION 

Maintaining stability in the presence of uncertainty has long been recognized as the 

crucial requirement for a closed-loop feedback system [ 1,2]. Classical designers developed 

the concepts of gain and phase margin to quantify stability-robusmess measures. In the 

modern control era, criteria for maintaining closed-loop stability in the presence of a single, 

unstructured (i.e. norm-bounded) modeling uncertainty have been formulated in terms of a 

singular value frequency-domain inequality on the closed-loop transfer function [3]. 

Recently, the issue of multiple modeling uncertainties appearing at different locations in 

the feedback loop, and the related requirement of performance-robustness, has been 

addressed [4]. Multiple unstructured uncertainty blocks, real parameter uncertainty, and 

performance specifications give rise to so-called structured uncertainty. A new analysis 

framework, based on the structured singular value p, has been proposed by Doyle to assess 

the stability and performance robustness of linear, time-invariant (LTI) feedback systems in 

the presence of structured uncertainty [5]. 

While the analysis aspect of LTI feedback design is well-established, the definitive 

robust synthesis methodology has yet to be developed. The design of a feedback system that 

exhibits closed-loop stability and performance in the face of modeling uncertainty is the so- 

called "p-synthesis" problem [6-81. The synthesis approach proposed by Doyle in [6] is an 

iterative scheme, referred to as DK iteration, that involves a sequence of scaled H,-based 

feedback design problems. Unfortunately, convergence to the global solution is not 

guaranteed due to the inherent nonconvexity of the problem. Since local solutions may 

result, it is worthwhile to explore other fundamentally different approaches to p-synthesis 

that may result in feedback systems with improved robusmess properties. In addition, when 

the CRM was developed the solution of H, problems was computationally very 

cumbersome; this situation has now changed. 
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The block diagram in Figure 1.1 has become the standard framework for considering 

the robust feedback design problem [6-81. This diagram represents any linear 

interconnection of inputs, outputs, perturbations, and a compensator. P is the known model 

that contains the plant to be controlled, and any weighting functions that describe the 

frequency-domain characteristics of the modeling uncertainty and performance specifications. 

A represents a perturbation due to the modeling error, it is a member of the set 4 where 

A = ( A I A = diag( A1,A2,  ..., A n ) ,  Ai E P ] (1.1) 

P = ( A I A stable, 11 A 11, c 1 ) 

K is the compensator to be designed. The synthesis objective is to find a K to achieve 

nominal stability and perfomance of the feedback loop, and to provide robustness with 

respect to the modeling error. Simply stated, K should be chosen so that the closed-loop 

transfer function matrix from the exogenous inputs d to the error signals e is "small" for all 

A E A In the sequel, a method is presented for computing such a compensator K. 

Section 2 discusses the analysis of the system in Figure 1.1 The structured singular 

value p is shown to be an essential tool for dealing with the problem of robust performance. 

The CRM, a synthesis method based on p, is presented in Section 3. Section 4 contains a 

numerical example of a CRM design. 
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Figure 1.1 General framework for the robust feedback design problem. 

2. ANALYSIS 

In this section, well-known results pertaining to the stability and robustness analysis of 

the system in Figure 1.1 are briefly summarized. The compensator K in Figure 1.1 is known 

for the purposes of analysis, and is incorporated with the plant P via a lower linear fractional 

transformation to yield the closed-loop operator S (Figure 2.1). 
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Figure 2.1 Analysis block diagram. 

Nominal Stability 

For a perturbation A identically equal to zero, stability of S will be guaranteed by the 

Youla parameterization of all internally stabilizing compensators [9,10]. All such 

compensators are described in terms of coprime factorizations of the plant P and a free 

parameter Q E &. This compensator smcture results in an internally stable closed-loop 

map S that is affine in the free parameter Q, i.e. 

where Tij is a function of the plant P and is in &. 



t 

Page 6 

Stability and Performance Robustness 

The closed-loop transfer function from the inputs d to errors e in Figure 2.1 is given by 

the upper linear fractional transformation FJS, A). 

FJS, A) = S22 + S2,A(I - SllA)-'S,2 (2.3) 

Then, to satisfy the stability and performance robustness requament, F,(S, A) must be 

stable and "smal1"for all possible A E A The following theorem establishes the robustness 

criterion. 

Robust Performance Theorem [8] 

FJS, A) is stable and 11 FJS, A) II,s 1 V A E A if and only if 

II p[S(jo)] II, I 1 

where p is the structured singular value computed with respect to the 

appropriate block structure. 

From the properties of the structured singular value in [5] and Eqn. (2.2), the Robust 

Performance Theorem is satisfied if 

11 D(T,, + TI2QT2,)D-l 11, I 1 

for some diagonal scaling transfer function D and a Q E k. 

(2.4) 
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3. SYNTHESIS 

The synthesis problem will be discussed with respect to the block diagram in Figure 

3.1. The nature and structure of the perturbation A impose known constraints on the 

feedback system; hence, A may be ignored for now. 

d 

Y 

Figure 3.1 Synthesis block diagram. 

From the previous section on analysis, we know that a compensator K can be found to 

meet the design objectives if a function Q exists such that 

At each frequency, D is a known, real, diagonal scaling matrix. Note tha. ;is just a scale 

factor to ensure the synthesis problem has a solution. The CRM will find the minimum y and 

a transfer function matrix Q that satisfies (3.1) and (3.2), for fixed scaling D. The 

compensator K in Figure 3.1 is then computed as a function of the Q parameter and the 
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coprime factorization of P. 

The fmt step of the CRM is the design of a nominally stabilizing compensator q0, for 

the design plant model P. This may be accomplished by any existing synthesis method; the 

robustness of this design is a lower bound on the robusmess of the feedback loop to be 

designed by the CRM. The H, methodology [ 11, 12,131 provides a reasonable starting 

design for the CRM since the largest singular value is an upper bound on the structured 

singular value [5]. The nominal closed-loop map is simply S,, = F,(P, Go,). 

The robustness properties of S,, are determined by computing an upper bound on 

p[S,,(ja)] [5]. This will result in a real, diagonal scaling matrix D,,, at each frequency, 

and a measure of nominal robustness ynom. 

where D = ( diag(dlI,d21, ... ,%I) I dj E R, } (3.4) 

The next step in the CRM is the parameterization of all stabilizing compensators in 

terms of the free parameter Q E H, [9,10]. This parameterization is per fmed so that the 

nominal compensator Grn and the nominal closed-loop system S,, result when Q is the 

zero function [ 141. 

Form the right and left coprime factorizations of the plant transfer function mamx P22. 
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It is shown in [ 141 that functions U and V in RH, may be computed so that 

- k J  + fiv = I  

Kom = uv-l 
(3.7) 

(3.8) 

The following two theorems are well-known. 

Theorem 3.1 

feedback system in Figure 3.1 is parameterized by the formula 

The set of all proper controllers achieving internal stability for the 

K = ( U + M Q ) ( V + N Q ) - ' ,  Q E  H, (3.9) 

The above theorem parameterizes all stabilizing controllers for the plant P in terms of a free 

parameter Q. The affine parameterization of the stable closed-loop transfer function matrices 

from exogenous inputs d to errors e follows. 

Theorem 32  

achievable by an internally stabilizing proper controller is 

The set of all closed-loop transfer function matrices S from d to e 

S = ( S I S = T11 + T12QT21, Q E €L, I + D22 Quo) invertible at o = -} (3.10) 

where Tll = Pll + P12 U % P21 

= Smm 

7-12 = Pl2M 

T21 = %P21 
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Theorem 3.2 parameterizes all stable closed-loop maps from d to e in terms of a stable, 

causal function Q. The most elementary function in H, is the zero function, and by 

construction the resulting closed-loop is Smm. However, S,, and the robustness bound 

ynom may not represent adequate stability and performance robustness of the feedback system 

&e. ynom > 1). Thus, the aim of the CRM is to improve the robustness of the closed-loop 

system (i.e. decrease the robustness bound y) by exploiting the extra degee of freedom 

available in the free parameter Q. The CRM may be thought of as an algorithm to "fine-tune" 

the nominal design Snom by adjusting the frequency response of the transfer function matrix 

Q . In the remainder of this section, a procedure is developed to find a Q E H, such that 

The implication is clear. Start with a "good" nominal design Tll = SnOm, and the CRM 

will produce another closed-loop system whose robusmess is at least as good as that of the 

original design. 

Rert.louk 

change throughout the CRM process. As we shall see, this greatly simplifies the design 

problem and leads to a convex program in Q. However, we are now no longer trying to 

optimize the structured singular value p; the infiiity norm of the scaled closed-loop system, 

D,,(Tll + T12QT21)Dno;', will be minimized (for the fixed scaling Dnm). 

The scaling D,, is computed as a function of S,, (Eqn. 3.3). and does not 

Once a compensator has been computed by the CRM, S,, may be redefined to 

incorporate this new design. The scaling D,, is recomputed, and the causality recovery 

process repeated. This represents a different approach to the DK iteration described in [6-81. 

As such, the procedure is nonconvex and convergence to the globally optimal compensator 

and scaling is not guaranteed. 
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Optimal Noncausal Design 

The Causality Recovery Methodology treats the constraints in (3.1) and (3.2) 

independently. This allows the designer to temporarily ignore the causality restriction on Q 

and examine the synthesis problem at each frequency. The rationale behind this approach can 

be simply described in a single-input, single-output context. 

A function in H, (Le. a stable, causal function) is analytic in the right half plane. 

Cauchy's Integral Theorem applied along the familiar Nyquist contour imposes constraints 

on the frequency response of such a function (i.e. Bode's gain and phase integral 

relationships [ 13). The phase (gain) of a stable, causal transfer function is completely 

determined by the gain (phase) over all frequencies. When the stability/causality restriction is 

lifted, there is no relationship between the gain and phase of a system from one frequency 

point to the next. Therefore, we can treat each frequency point as independent from every 

other frequency. 

This philosophy allows one to maximize the "robustness" of the feedback system at 

each frequency using only complex matrix arithmetic. The result is a closed-loop function 

with "optimal" performance-robusmess. In this case, the price paid for such optimality is 

that the closed-loop system will not be causal in general. That is, the function will be a 

member of L,, not &. However, such a system will provide a lower bound on the 

robustness measure y. 

The frequency by frequency approach to maximizing robustness suggests the following 

optimization problem for finding the optimal, noncausal function Q*. 
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It is easy to prove the following result. 

Theorem 33 The optimization in (3.12) is a convex program in Q. 

Remark 

The parameters are the real and imaginary parts of the elements of Q. ,This results in having 

to calculate 2mp real, scalar parameters at each frequency. 

The optimization in Eqn. (3.12) is carried out independently at every frequency. 

The robustness bound on the optimal noncausal system is 

(3.13) 

The measure y* is a lower bound on the performance-robusmess measure that may be 

achieved by a Q E k. 

Causality Recovery 

The optimal noncausal function Q* E L,, and is in general not in &. Thus, the 

restriction imposed by the Youla parameterization is not satisfied and nominal stability of the 

closed-loop is not achieved by the function Q*. In this section, we propose an algorithm to 

find a Q E H, such that the closed-loop performance-robustness is no worse than, and 

hopefully superior to, that of the nominal design, i.e. 

(3.14) 
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This process, referred to as causality recovery, may be thought of as an adjustment of 

the frequency response of Q* in such a way as to reduce its noncausality, or distance from 

H,, subject to a robustness constraint on the closed-loop function. An alternative view is 

that causality recovery is a search for an H, function over a tube in complex matrix space 

versus frequency. The robust performance specification dictates the geometry of the tube. 

Define the feasible set of frequency responses that satisfy the robustness specification 

At a specific frequency, the feasible set alTp may be interpreted as a set of complex mamces Q 

satisfying 

(3.16) 

The feasible set 4D contains all L, functions that satisfy the robust performance 

specification for a given y. We wish to determine if any of the L, functions in Q are also in 

&. The fundamental component of the Causality Recovery Methodology is an optimization 

problem to establish the existence of a Q E Q n E. Nehari's Theorem [ 11, 12, 151 states 

that an L, function Q is in if and only if the nonn of the Hankel operator with symbol Q, 

II rQ 11, is identically zero. This suggests the following optimization problem. 

min II rQ It 
Q E  

(3.17) 
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This problem is at the heart of the CRh4, and it is easy to prove that: 

Theorem 3.4 The optimization in (3.17) is a convex program in Q. 

If an H, function lies within @J (for a given y), then the minimum in (3.17) is zero and 

the argument Q results in a nominally stable closed-loop that achieves the robust performance 

objective. If y is too small (i.e. the performance specifications are too stringent for the given 

amount of modeling error), a stable, causal function may not lie in the feasible set and the 

minimum Hankel norm will be some positive number. A binary search over the interval 

[y*, ynom] can be used to find the minimum y that admits an H, function into the feasible set. 

The search procedure is analogous to the y-iteration that is performed as part of the standard 

H, design process [ 11, 12, 131. 

The optimization in (3.17) is an infinite-dimensional, convex program due to the 

definition of aZP as a set of L, functions. For implementation purposes, a finite-dimensional 

(Le. computable) algorithm that approximates the optimization program in (3.17) and the 

CRM y-iteration has been developed [ 141. Unfortunately, convexity is lost in the finite- 

dimensional case. 

Although the Hankel norm optimization is no longer a convex program in Q, the 

algorithm in [ 141 guarantees the finding of a finitedimensional, rational transfer function 

matrix Q with the following properties. 

for any E > 0, and some k > 0. 

A QH in H, (Le. with Hankel norm identically equal to zero) is then computed as the 
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best H, approximation of the Q produced by the CRM algorithm, using the procedure in 

[ 161. The closed-loop robustness associated with QH is within a multiple of E of the 

robustness measure associated with Q [14]. The CRM compensator K is constructed 

according to Eqn. (3.9). 

4. ANUMERICALEXAMPLE 

This section presents a design example to illustrate feedback system synthesis via the 

Causality Recovery Methodology. More specifically, we show how the CRM improves the 

performance-robusmess of a feedback system. The problem to be considered is a 

multivariable system created by Stein [ 171. The feedback suucture is given by the 

conventional block diagram in Figure 4.1. There is a multiplicative uncertainty block at the 

plant input and a performance specification at the plant output. Note that this is a special case 

of the more general framework in Figure 1.1. 

K G 
i 

Figure 4.1 Conventional feedback structure. 
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Given the problem structure in Figure 4.1, the plant P in Figure 1.1 is 

where 

The nominal plant is 

G is the plant to be controlled 

W, is the uncertainty weighting function (i.e. the bound on the 

input multiplicative modeling error) 

We is the performance weighting function (i.e. the bound on the 

output sensitivity function) 

(4.2) 

For a = 5,  the singular values of Goo) are shown in Figure 4.2. 
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Figure 4.2 The frequency response of the singular values of the nominal plant G. 

The multiplicative uncertainty at the plant input results in a perturbed plant 

= GII + L] 

The bound on the multiplicative error L is 

(4.3) 

(4.4) 

The singular values of W,(jo) are shown in Figure 4.3. 
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After examining Eqns. (4.2) and (4.4), one may conclude that the system is decoupled 

and can be treated as two SISO problems. This is not the case, however. The diagonal 

uncertainty weight merely provides a bound on the singular values of the multiplicative 

perturbation; a legal perturbation may be a full transfer function matrix. In such a case, the 

perturbed plant would be coupled. Thus, this problem is truly multivariable in nature and 

may not be treated as two SISO designs. In the sequel, we will evaluate the performance of 

the CRM design with one of these coupled plants. 

The performance weighting function was chosen to provide a "cross-over gap" with 

respect to the uncertainty weight in Eqn, (4.4). 

OS(s  + 1) 1OoO 
s We(S) = 

The singular values of We@) are shown in Figure 4.3. 

(4.5) 

Figure 4.3 The singular values of the uncertainty and performance weighting functions. 
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A (four-block) H, design was performed for the plant model P in Eqn. (4.1). A recent 

advance by Doyle and Glover [ 181 allows one to efficiently solve H, feedback problems 

through the solution of two Riccati equations. This procedure was used to compute the 

diagonal H, compensator KO, shown in Figure 4.4. The characteristics of the closed-loop 

transfer function S,, = F@, KO,) are plotted in Figure 4.5. The robustness bound of the 

H, design is ynom = 1.9 1. 

Figure 4.4 The singular values of the H, compensator qom. 
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Figure 4.5 Characteristics of the closed-loop eansfer function S,, for the H, design. 

The CRM procedure was carried out as described in Section 3, and the singular values 

of the resulting diagonal compensator are shown in Figure 4.6. The frequency response of 
the CRM scaled closed-loop transfer function matrix, Dnm(Tl1 + T12QT21)Dnom -1 , is 

shown in Figure 4.7. The robustness bound in this case has been reduced to 1.61 (compare 

with the H, design ynm = 1.91). Thus, the CRM has improved the performance-robustness 

of the closed-loop system. 
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Figure 4.6 The frequency response of the singular values of the CRM compensator. 
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Figure 4.7 The response of the largest singular value of the CRM closed-loop matrix. 
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The implications of reducing the robustness bound are best understood in the context of 

the conventional feedback loop in Figure 4.1. A performance comparison between the H, 

and CRM compensators will be made for a given reference command. 

The output (y) responses to a reference command r = [ 1 13' are shown in Figures 4.8 

and 4.9. The y1 response of the H,,, design exhibits 18% overshoot and no undershoot 

(Figure 4.8). The y1 response of the CRM design has the same overshoot, and a little 

undershoot (Figure 4.9). However, the settling times of the two designs are approximately 

the same (6 seconds). The y2 CRM response has much less overshoot and a significantly 

faster settling time when compared to the H, design. 

The true benefits of a robust design methodology, such as the CRM, are brought to 

light when the plant in the feedback loop is other than the nominal plant G. From Eqn. (4.3), 

a perturbed plant E is a product of the nominal plant G and some multiplicative input 

uncertainty. The following transfer function matrix is a legal plant, as defined by the set of 

admissible perturbations A and the uncertainty weight W,(s). 

N 

G =  

a - 
S 

kd' 

ka 
S + $  
- 

a-l 

s + 5  S 

(4.6) 

where a = 5 and k = 1.75. The response of the system in Figure 4.1 is examined for the case 

when the permbed plant 6 is in the feedback loop. 
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Figure 4.8 The closed-loop output response to an input command r = [ 1 11' with plant G 

and the H, compensator. 
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Figure! 4.9 The closed-loop output response to an input command r = [ 1 11' with plant G 

and the CRM compensator. 
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The H, compensator and the perturbed plant produce a poor y1 step response, shown 

in Figure 4.10. However, the y2 response is virtually unaffected by the perturbation. The 

reiponse of the CRM design, with 5 in the loop, is shown in Figure 4.1 1. The y1 response 

exhibits more than twice the overshoot, when compared to the response with G in the loop, 

but this is significantly better than the H, design. Note that the y2 response is largely 

unaffected by the perturbation because of the factor of a-1 (0.2) in the 521 transfer function 

(Eqn. 4.6). 

The CRM design objective of increasing the performance-robustness of the feedback 

loop was achieved. This resulted in better closed-loop performance, particularly when a 

plant other than the nominal was in the feedback loop. That is, the degradation in feedback 

performance resulting from plant perturbations was much less severe for the CRM design 

than for the H, compensator. This suggests that the four-block H, design is not particularly 

well-suited for handling significant amounts of plant modeling error, at least in this simple 

example. 

The most significant drawback of the CRM is the computational inefficiency of the 

causality recovery algorithm, as a consequence of the huge number of optimization problems 

being solved. Several days of computation were required on a Micro-VAX workstation. 

Clearly, the severe computational burden is sufficient to make the CRM impractical at this 

time if implemented on a serial machine. However, the optimization programs should be 

parallelizable for super-computer implementation. Nonetheless, in view of the recent 

breakthrough in efficiently solving H, feedback problems [ 181, Doyle's DK iteration method 

[6--81 requires more modest resources to converge to a (local) minimum. 
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Figure 4.10 The closed-loop output response to an input command r = [ 1 11' with 

perturbed plant and the H, compensator. 
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Figure 4.11 The closed-loop output response to an input command r = [ 1 11' with 

perturbed plant 8 and the CRM compensator. 
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5. CONCLUSIONS 

ha A new design technique, the Causality Recovery Methodolog been developed for 

th6 synthesis of finite-dimensional, linear, time-invariant feedback systems. Stability and 

performance in the presence of multiple, unstructured modeling uncertainties is guaranteed. 

The CRM will produce a closed-loop system whose performance-robustness, expressed in 

terms of the structured singular value, is better than or equal to that of a given (nominal) 

feedback system. Thus, the CRM may be used as a stepping stone for a new DK iteration 

for robust synthesis. 

The numerical example demonstrates that the CRM is a viable design concept. While 

these preliminary results are encouraging, the tremendous computational cost associated with 

the robustness enhancement makes the method impractical for implementation on serial 

machines at this time. 
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